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Motivation and High Level Problem

How can we extract useful behaviors from demonstrations for generalization?

❖ Idea: Segment demos to extract reusable behaviors.

t=0 t=T

Demonstration: (s,a) 
sequence, or trajectory, 
which solves some task

LfD

𝜋1
Learned Policies

Learning from Demonstration
t=0 t=T

CST

o1, o2, o3, o4
Extracted Skills

Constructing Skill Trees

t=0
t=T

𝜋2

t=0
t=T

o5, o6, o7

Compare & Combine
Skills into a Tree
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Problem Setting

Given:
● Multiple demonstrations in a given RL environment

○ Assume demonstrations gathered from same MDP (S, A, T, 𝛾, R)

Goal:
● Extract skills from each trajectory, and determine if pairs of skills are similar 

enough to be combined
● This leads to constructing a skill tree
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Related Work
Learning from Demonstration (LfD) [Schaal, NeurIPS 1996] [Argall et al., 2009]

● Typically want to learn optimal policies which can reproduce such trajectories

Skill Acquisition, Abstraction [Konidaris and Barto, NeurIPS 2009][Konidaris and Barto, IJCAI 2009]

● Skill chaining – find a sequence of skills to achieve a goal (by intersecting initiation sets 

together). Skill trees introed by this paper.

● State Abstraction – make decisions in a lower dimensional space, or “smaller” state space.

Segmentation [Dixon and Khosla, 2004a, 2004b]

● Distinction – segmented trajectories into policies that are linear robot state variables

(vs inferring value functions in this current paper)
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Key Contributions

Components:

❖ Segmenting demonstrations leads to skill sequences

❖ Skills in skill sequences have their own goals; demonstrations have subgoals

❖ Each skill is defined in terms of skill-specific abstractions

❖ Merge similar skills together (from separate sequences) into a tree

Simultaneously perform statistical trajectory segmentation to extract skills 

with goals, and associate skill-specific abstractions.
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Background
Reinforcement Learning

Value functions ←→ discounted returns  

Options

Temporally extended actions

Abstraction Selection

Use only relevant features / dimensionality reduction

Changepoint Detection

Were two consecutive state-action subsequences generated differently?
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Reinforcement Learning - RL

Typical RL diagram in fully observable environments (i.e. MDPs).

𝜋

P(s’|s,a)

Set of possible states (state space)
Set of possible actions (action space)
Transition model
Reward model generates a reward
Discount factor

Objective:

Agent must learn the optimal policy 𝜋 which maximizes the expected discounted return from each state.
However, the agent only has access to samples from the environment.

Markov Decision Process (MDP) – 
fully observable + Markov assumption

argmax𝜋
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Approximating Value Functions

- Linear value function approximation – 
- approximation w/ set of basis functions

- This paper uses a Fourier basis (inspired by Fourier series)

Key Insight: Which basis sets are best for representing value functions for different parts of the demonstration?



CS391R: Robot Learning (Fall 2022) 9

Options + Abstraction Selection

Key insight: Assume abstractions are associated with basis functions and 
options.

Options (skills)

- Option Policy – operating with a specific state abstraction
- Initiation Set – set of states over which an option can executed
- Termination Condition – describes probability where an option ends
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Changepoint Detection
Maximum a posteriori estimation – which future timestep in the trajectory has the highest probability density of being 
generated by a different model?

- Used a Viterbi algorithm to obtain MAP changepoints
- Modeled using a Hidden Markov Model (HMM).

t=0 t=T

i jj-1
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Hidden Markov Model of Changepoint Detection

model another modelprobability that the 
trajectory is (j - 1) - i 
steps.

prior on other model

probability that this model generated 
this portion of the trajectory

trajectory with time steps

Priors:
segment length ~ Geom

Stratified Optimal Resampling [Fearnhead 
and Liu 2007] to filter particles.

They use Fearhead and Liu’s online MAP 
changepoint detection algorithm.

Model (q): 
Linear value function 
approximation (via basis set) + 
the abstraction
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Online Trajectory Segmentation into Skill Chain

Input: Demonstration, Fourier Basis, Abstractions
1. Compute MAP estimates using conjugate priors in closed form.

2. Compute sufficient statistics and Viterbi path in an online fashion.
a. Future timestep statistics depend only on previous timestep statistics
b. Each particle stores:

3. Target is the sample return
Which Viterbi path results in predicted return closest to target?

Output: Skill Chain ← Changepoints + Viterbi Path (model sequence)

Changepoint
Value Function Model
MAP Estimate

Viterbi Path (likely sequence of models)
Basis functions evaluated at current state
Discounted future return from current state



CS391R: Robot Learning (Fall 2022) 13

Merging Skills

Merge statistically similar segments via conditional probability of future 
changepoint from time t, given a model q

– What is the probability that two segments were generated by the same skill?

– What is the probability that two segments were generated by two different skills?
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Evaluations
Pinball domain

Demonstration 1 segmentation Demonstration 2 segmentation Merged Skill Tree
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Evaluations Pinball domain

  skills
  from scratch
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Evaluations - Mobile Robot Manipulation

Skills from human demonstration Skills from robot controllers
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Context / Related Work / Limitations of Prior Work
1 or more slides

Which other papers have tried to tackle this problem or a related problem?

❖ The paper’s related work is a good start, but there may be others

❖ What is the key limitations of prior work(s)?
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Proposed Approach / Algorithm / Method
1-5 slides

Describe algorithm or framework (pseudocode and flowcharts can help)

❖ What is the optimization objective?

❖ What are the core technical innovations of the algorithm/framework?

Implementation details should be left out here, but may be discussed later if its relevant for limitations / 

experiments
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Theory (if relevant)
What are the assumptions made for the theory? Are these reasonable? Realistic?

If the theory build strongly on other prior theory / results, reference those and state them here.
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Theory (if relevant, continued)
State main results formally

Give proof sketches

Refer students to the full proofs in paper
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Experimental Setup
1-3 slides

Description of the experimental evaluation setting

❖ What is the domain(s), e.g., datasets, tasks, robot hardware setups?

❖ What are the baseline(s)?

❖ What scientific hypotheses are tested?

How did the authors evaluate the success of their approach?

❖ Clear description of the metrics that will be used
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Experimental Results
>1 slide

Present the quantitative and qualitative results

Show figures / tables / plots / robot demos

Pinpoint the most interesting / significant results
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Discussion of Results
Demonstrated their CST algorithm can be applied to increasingly complex domains and environments.

- Skill tree from human demonstration in pinball domain

- Skill tree from human demonstration

- Skill tree from robot demonstration (skills from closed-loop controllers)

- Starting with no knowledge: 13 minutes per episode of interaction time

- CST “consistently extracted skills” – however, they did not present a metric to show this. What was 

the error rate? What was the success rate?
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Critique / Limitations / Open Issues 
Limitations: Assumptions:

❖ Assumes that all demonstrations have the same goal

❖ Assumes reward is available

❖ Assumes an abstraction library is available (not learned)

❖ Their CST algorithm is robust to parameters, except for the variance in the noise prior.

❖ Possible a skill graph may be formed, rather than a tree
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Future Work

❖ Utilize skill graphs – goal conditioned tasks

❖ Learn abstractions – are the abstractions Markovian?

❖ Reducing the simplifying assumptions
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George Konidaris and Andrew Barto. Skill Discovery in Continuous Reinforcement Learning Domains using Skill Chaining. NeurIPS 2009.

A. Bagaria, J. K. Senthil, G. Konidaris. Skill Discovery for Exploration and Planning using Deep Skill Graphs. ICML 2021.

George Konidaris and Andrew Barto. Efficient skill learning using abstraction selection. IJCAI 2009.

C. Allen, N. Parik, O. Gottesman, and G. Konidaris. Learning Markov State Abstractions for Deep Reinforcement Learning. NeurIPS 2021.

David Abel. A Theory of Abstraction in Reinforcement Learning. PhD Thesis 2020. Brown University.

G. Konidaris, L.P. Kaelbling, and T. Lozano-Perez. From Skills to Symbols: Learning Symbolic Representations for Abstract High-Level Planning. 
JAIR 2018.
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Summary

❖ Problem:  How to construct skill trees from demonstrations?

❖ Importance: Reusable skills. Difficulty: Lots of assumptions are made.

❖ Limitations of Prior Work: Policies from LfD lack composability.

❖ Key Insights: HMM of approximated value function predicts actual returns; used for changepoint 

detection.

❖ Demonstrated to work on increasingly complex domains, including mobile manipulation


